# 课本课后习题
单词
单词 缩写 中文翻译
Activation Function 激活函数
Additive White Gaussian Noise AWGN 加性高斯白噪声
algorithm 算法
Amplitude 幅值
Amplitude Modulation AM 调幅
approximation 近似
Artificial Intelligence 人工智能
Asymmetric Digital Subscriber Line ADSL 非对称数字用户线路
Asynchronous 异步的
Asynchronous Transfer Mode ATM 异步传输模式
Automatic 自动的
Automatic Repeat-reQuest ARQ 自动重传请求
Band stop filtering 带阻滤波
Band-pass filtering 带通滤波
Bandwidth 带宽
Bandwidth 带宽
Base Station 基站
Baud rate 波特率
Bayesian network 贝叶斯网络
Bit Error Rate BER 误码率
Bluetooth Low Power BLE 低功耗蓝牙
cable 电缆
Capacitance 电容
Central Processing Unit CPU 中央处理器
Channel 信道
clustering 聚类
Code Division Multiple Access CDMA 码分多址
Communication Engineering 通信工程
computer vision 计算机视觉
Continuous 连续
convergence 收敛
convolutional neural network CNN 卷积神经网络
Correlation function 相关函数
CSMA/CA 载波侦听多点接入/碰撞避免
CSMA/CD 载波侦听多点接入/碰撞检测
current 电流
Cyclic Redundancy Check CRC 循环冗余校验
deep learning 深度学习
Derivation 导数
Difference equation 差分方程
Differential 微分
Diode 二极管
Discrete 离散
Discrete Fourier Transform DFT 离散傅里叶变换
discriminator 判别器
Embedding 嵌入式
Encrypt 加密
Excitation 激励
Feedback 反馈
Feedforward 前馈
filter 滤波器
Fourier series 傅里叶级数
Fourier Transform 傅里叶变换
Frequency band 频段
Frequency Spectrum density 频谱密度
Frequency-Hopping Spread Spectrum FHSS 跳频
Gain 增益
Generator 生成器
GPRS 通用分组无线服务
GSM 全球移动通信系统
High-pass filtering 高通滤波
Impedance 阻抗
Inductance 电感
Industrial Scientific Medical ISM 工业、科学、医疗(网络)
Integral 积分
International Telecommunication Union ITU 国际电信联盟
Internet Of Things IOT 物联网
Laplace transform 拉普拉斯变换
Linear Regression 线性回归
Linear time invariant system LTIS 线性时不变系统
Local Area Network LAN 局域网
Logarithm 对数
Long-Short Term Memory LSTM 长短期记忆
Low-pass filtering 低通滤波
Mesh 网(状)
Modem 调制解调器
MTU 最大传输单元
Multicast 组播/多播
Narrow Band Internet of Things NB-IoT 窄带 物联网
Near Field Communication NFC 近场通信
Nonlinear system 非线性系统
Optical 光学的
Optical fiber 光纤
Order 阶次
Orthogonal Frequency Division Multiplexing OFDM 正交频分复用
Packet 数据报
Phase 相位
Potential 电势
Proportion 比例
Protocol Data Unit PDU 协议数据单元
Pulse Code Modulation PCM 脉冲编码调制
Quantum 量子
Radio Frequency Identification RFID 射频识别
reinforcement learning RL 强化学习
Relay 中继器
Resistance 电阻
Response 响应
Robustness 稳健性/鲁棒性
Self-Driving 自动驾驶
Signal 信号
Signal-to-noise ratio 信噪比
Step signal 阶跃信号
Support Vector Machine SVM 支持向量机
Synchronous 同步的
Telecommunication 电信
Terminal 终端
Time Division Multiplexing Address TDMA 时分多址
Time To Live TTL 生存时间
Transistor 晶体管
Transistor-Transistor Logic TTL 逻辑门电路
Transmit 发送、发射
Unicast 单播
Unit impulse signal 单位冲激信号
unsupervised learning 无监督学习
Variance 方差
Voltage 电压
von Neumann architecture 冯·诺伊曼架构
Wide Area Network WAN 广域网
Wireless Local Area Network WLAN 无线局域网
Unit 1
A
semaphore n. 臂板信号系统,(铁道)臂板信号装置
optical adj.视觉的,视力的;光学的
telegraphy n.电信技术,超感
beacon n. 灯塔,信号浮标,烽火
relay n. 传递;继电器 v. 转播;分程传递
crank n. [机]曲柄 v. 转动曲柄移动;使弯曲
patent n. 专利 v. 获得……专利,给予……专利权
lucrative adj. 获利多的,赚钱的,合算的
span v. 跨越时间或空间
empirically adv. 以经验为主地
harmonic adj. 和声的,谐和的 n. [物]谐波,和声
transmission n. 播送,传送;传动装置
transcontinental adj.横贯大陆的,大陆那边的
electromagnetic adj. [物]电磁的
cathode n. [电]阴极,负极
silhouette n. 轮廓,剪影;(事物的)形状
coaxial adj. 同轴的,共轴的
communal adj. 群体的,公民的,公共的
telephony n.电话学,电话,电话制造
geostationary adj. 与地球的相对位置不变的
configuration n. 布局,构造;配置
protocol n. (数据传递的)协议
ARPANET: Advanced Research Project Agency (美国高级研究计划署)
TCP: Transmission Control Protocol (传输控制协议)
UDP: User Datagram Protocol (用户数据报协议)
B 不考
electromagnetism n.[电磁]电磁学
quantum n. 量子论;额(特指定额、定量)
excel v. 超过,擅长; (在某方面)胜过(或超过)别人
colossal adj. 巨大的;异常的,非常的
lathe v. 用车床加 n. 车床;机床
spectroscope n.[光]分光镜
apparatus n. 装置,设备;仪器;器官
fierce adj. 凶猛的;猛烈的;暴躁的
inertia n.[力]惯性;惰性,迟钝;不活动
dazzle n. 灿烂 v. 使..…·目眩;眼花缭乱,炫耀
grip n.紧握 V. 紧握,夹紧;抓住
mighty adj.有力的 adv. 很;非常 n. 有势力的人
crumble v.崩溃;破碎,粉碎 n. 面包屑
vibration n. 振动;犹豫;心灵感应
radiate v. 辐射,传播;辐射,从中心向各方伸展
oscillating adj.[物]振荡的
astronomy n. 天文学
Unit 2
Text A 不考
convergence n. 趋同;集收敛;集合,会聚; [气]辐合
infrastructure n. 基础结构,基础架构;基础设施;基础建设
differentiate v. 区分,辨别;使不同
ubiquitous adj. 无所不在的,普遍存在的
assimilation n. 吸收,消化; [生]同化作用
subscriber n. 用户,订户
seamless adj. 无缝的;无漏洞的
roam v. & n.漫游,漫步
cellular adj. 蜂窝状的;细胞的;多孔的
analog adj. [电]模拟的; (钟表)有长短针的
implement v. 实施,执行;使生效,实现
hub n.(电器面板上的)电线插孔; [计]集线器
authenticate v. 使生效;鉴别;证明是真实的
encryption n. 编密码;加密
decompress v. 解压
compress v. 压紧;压缩;精简
synchronization n. 同步,使时间互相一致,同时性
profile n. 人物简介;外形,轮廓
consortium n. 组合,共同体;财团
quadrant n.象限仪,四分仪;四分之一圆
gateway n. 网关;入口;途径
**Text B **
wireless adj. 无线的;无线电的
manipulate v. 操纵;操作;巧妙地处理;篡改
simultaneous adj.同时的;联立的;同时发生的
surpass v. 超越;胜过,优于;非……所能办到或理解
throttle n. 节流阀
metropolitan n. 大城市人 adj 大都市的
buzzword n. 流行词
bandwidth n. [电子][物]带宽; [通信]频带宽度
available adj.可获得的;可购得的;可找到的;有空的
megabit n. [计]兆位;百万位
gigabit n. [计]千兆比特
streamline n. 流线;流线型 v. 把……做成流线型
spike n. 长钉,道钉;钉鞋;细高跟 V. 阻止;以大钉钉牢
interoperable adj.彼此协作的;能共同操作的;能共同使用的
rollout n. 首次展示; [航]滑跑
downlink n. 下行线;向下链路;向地传输
Unit 3 期末不考
Text A
laptop n. 便携式计算机
console n. 控制台,操纵台;演奏台
smartphone n.智能手机
massive adj. 大量的,重的,大块的
hyperlink n. 超链接
upload v. 上传
millisecond n. 毫秒
extension n.伸展,扩大;电话分机
virtually adv. 几乎;实际上
phish v. 网络钓鱼
monitor n. 监视器;显示屏
recipient n. 接受者;容器,容纳者
webcam n. 网络摄像头
client n. [经]客户;顾客;委托人
Text B
virus n. 病毒;恶毒;毒害
spam v. 刷屏,垃圾邮件
evolve v. 发展,进展;进化;逐步形成
initate v. 开始,创始;发起;使初步了解
propagation n. 传播;繁殖;增殖
perpetuate v.使不朽;保持 adj.长存的
intrusive adj.侵入的;打扰的
malicious adj. 恶意的;恶毒的;蓄意的;怀恨的
mainframe n. [计]主机;大型机
videoconference n. 可视会议
compatible adj. 兼容的;能共处的;可并立的
freeware n. 免费软件
shareware n. 共享软件
collaboration n. 合作;勾结;通敌
alphanumeric adj. [计]字母数字的
Unit 4
Text A
fiber n. 光纤
optics n. 光学
sophisticated adj. 复杂的;精致的;富有经验的
degrade v. 降低,贬低;使降级
friction n. 摩擦;冲突,不和;摩擦力
impedance n. 阻抗,全电阻,电阻抗
decay v. 衰退,衰败,衰落
near v. 接近,临近
slag n. 矿渣;熔渣
potent adj. 有效的,强有力的;烈性的
emit v. 发出;发射;颁布
substantial adj. 大量的;牢固的;重大的
substation n. 变电站,变电所
untapped adj. 未开发的,未利用的
hassle n. 困难的事情;麻烦的事情;争论
node n. 结点;(计算机网络的)节点
spell v. 导致;拼写;意味着
angular adj. 有角的;用角测量的,用弧度测量的
momentum n. 动量;势头;动力;要素
impactful adj. 有效的,有力的
conical adj. 圆锥(形)的
refraction n. 折射(程度);折射角
cone n.圆锥体,锥形物;(松树的)球果
Text B
genenc adj.类的;一般的;属的;非商标的
widespread adj.普遍的,广泛的;分布广的
boundary n. 边界;范围;分界线
curb n. 抑制;路边;勒马绳 V. 控制;勒住
Ethernet n. 以太网
ambiguously adv. 含糊不清地
terrrunate v. 结束,终止;结果
distinguish v. 区别,区分;辨别
deploy n. 部署 v. 配置,展开;部署,展开
acronym n. 首字母缩略词
liability n. 责任;债务;倾向;可能性;不利因素
backhaul n. 回程;载货反航
bill v. 宣布;开账单;用海报宣传
mamtenance n. 维护,维修;保持;生活费用
uneconomic adj. 不经济的;浪费的
Unit 9
Text A
access n.进入;使用权;通路
desirable adj. 令人满意的;值得要的
modulate v. 调节; (信号)调制;调整
overlap n.重叠;重复 v.部分重叠;部分的同时发生
simplify v.简化;使单纯;使简易
assign v.分配;指派;[计 数]赋值
transmit v. 传输;传播;发射;传达;遗传
hierarchical adj. 分层的;分级的;等级体系的
kilohertz n. [物]千赫
jumbo adj. 巨大的;特大的 n.庞然大物
segment v. 分割 n. 段;部分
composite n.合成物 adj.合成的 v.使合成;使混合
interleave v. [计]交错,交叉存取
align v. 使结盟;使成一行;匹配
mechanism n.机制;原理,途径;进程;机械装置;技巧
sporadically adv. 零星地;偶发地
simultaneously adv. 同时地
attenuate adj.减弱的;细小的 v. 使减弱;使纤细
buffer n. [计]缓冲区;缓冲器 v. 缓冲
duration n. 持续,持续的时间,期间
polarity n. [物]极性;两极;对立
Text B
orthogonal n.正交直线 adj.[数]正交的;直角的
encode v. (将文字材料)译成密码;编码
carrier n. 载波
attenuation n. [物]衰减;变薄;稀释
blur v. 涂污;使……模糊不清;使暗淡;站污
trailblazer n.开拓者;开路的人;先驱
adapt v. 使适应;改编;适应
fade v. 褪色;凋谢;逐渐消失
macrodiversity n. 宏分集
cyclic adj.环的;循环的;周期的
constramt n.[数]约束;局促,态度不自然;强制
vestigial adj. 退化的;残余的;发育不全的
subcarrier n. [电子] [通信]副载波;辅助波
suppression n. 抑制;镇压; [植]压抑
drastically adv. 彻底地;激烈地
Unit 10
Text A
demodulation n. 检波;反调制;解调制
amplitude n. 振幅;丰富,充足
megahertz n. 兆赫
interference n. 干扰,冲突;干涉
antenna n. 天线
conversion n. 转换;变换
digitize V. [计]数字化
binary adj. [数]二进制的;二元的,二态的
baseband n. 基带
preselect v. 预选
whereby adv. 凭借;通过……;借以;与……一致
modem n. 调制解调器(等于 modulator-demodulator)
superposition n.[数]叠加,重合
quadrature n. 正交;求积;弦
convolutional adj. 卷积的;回旋的;脑回的
trellis n. 格子;格子结构;框架
Text B
compact adj.紧凑的,紧密的;简洁的
audio adj. 声音的; [声]音频的,[声]声频的
application n.应用;应用程序;应用软件
fidelity n.保真度;忠诚;精确;尽责
density n.密度
lossless adj. 无损的
container n. 集装箱;容器
sine n. 正弦
verify v. 核实;查证
algorithm n.算法,运算法则
discrete n.分立元件;独立部件 adj. 离散的,不连续的
nibble n.轻咬;啃;细咬
notably adv. 显著地;尤其
interweave v. (使)交织;织进; (使)混杂
format n.格式;版式;开本 v. 使格式化
Unit 12
Text A
sequence n.数列,序列;顺序;连续
domain n. 域名;范围,疆土;管辖范围
subfield n. 子域;分栏;子字段;分支
estimation n. 估计;评价;判断
se1sm1c adj. 地震的;由地震引起的;震撼世界的
linear adj. 直线的,线形的
nonlinear adj. 非线性的
compression n. 压缩,压紧,浓缩,紧缩
discretization n. 离散化
quantization n.量子化;数字化;量化
approximate adj.近似的 v.接近于;使接近;使结合
rounding adj. 圆的,环绕的,凑整的
integer n. 整数
theorem n. 定理;(能证明的)一般原理,定律
derivation n. 引出,导出;衍生
quantize v.使量子化
enhancement n. 增强;增加;提高;改善
invariant adj.无变化的,不变的 n. 不变式 不变量
adaptive adj.适应的;有适应能力的
convolve v. 卷,盘旋,缠绕
cepstrum n.对数倒频谱,对数逆谱,倒频谱
logarithm n. 对数
capture v. 俘获;夺取;夺得;引起
synthesizer n.合成者,合成物;合成器,综合器
arithmetic n.算术,计算;算法
翻译
翻译1
5g is the latest generation of mobile networks and it’s a huge step up from what we have available to us.
5g是最新一代的移动网络,与我们现有的网络相比,它是一个巨大的进步。
today the jump from 3g to 4g networks was pretty huge.
今天,从3g网络到4g网络的飞跃非常巨大。
4g to 5g is many times greater and is almost difficult to comprehend.
4g到5g要大很多倍,而且几乎难以理解。
5g is an entirely new kind of network designed to connect virtually everyone and everything together be it smart,devices, vehicles, even industrial machinery.
5g是一种全新的网络,旨在将几乎所有人和所有事物连接在一起,包括智能设备、设备、车辆,甚至工业机械。
5g will co-exist with existing 4g networks until coverage is expanded significantly but it will eventually evolve into a standalone network that operates independently.
5g将与现有的4g网络共存,直到覆盖范围大幅扩大,但它最终将演变为一个独立运行的网络。
The appeal of 5g mostly boils down to speed and insanely fast response times referred to as latency.
5g的吸引力主要归结于速度和快得惊人的响应时间,即延迟。
latency is the time it takes for devices to respond to each other over any wireless network.
延迟是指设备在任何无线网络上相互响应所花费的时间。
3g networks have a response time of around 100 milliseconds.
3g网络的响应时间大约为100毫秒。
4g hovers around 30 milliseconds while 5g networks predict latency figures as low as 1 millisecond this virtually instantaneous communication will open up a new world of possibilities for anything with an established network connection as well as benefiting our internet experiences.
4g网络在30毫秒左右徘徊,而5g网络预计延迟数字低至1毫秒,这种几乎即时的通信将打开一个新的世界的可能性,任何与已建立的网络连接,并受益于我们的互联网体验。
The progression of emerging technologies will depend heavily on 5g living up to its expectations interactive technologies, such as augmented reality and self-driving cars require extremely low latency to work effectively pushing 5g networks to not only hit their goal of 1 millisecond latency but to surpass it.
新兴技术的发展将在很大程度上取决于5g能否达到预期,增强现实和自动驾驶汽车等交互技术需要极低的延迟才能有效工作,推动5g网络不仅实现1毫秒延迟的目标,而且还将超过这一目标。
So how does 5g work?
那么5g是如何工作的呢?
5g signals operate over previously untouched radio frequencies.
5g信号在之前未接触的无线电频率上运行。
Part of the network operates in a band known as sub 6 which is the spectrum between 600 megahertz and 6 gigahertz which is a spectrum that 4g lte also shares however only 5g can go above and beyond these frequencies into higher bandwidths which is what makes it so much better.
网络的一部分在一个被称为sub 6的频段运行,这个频段在600兆赫到6千兆赫之间,4g lte也共享这个频段,但是只有5g可以超过这些频率,进入更高的带宽,这让它变得更好。
5g can and will utilize a higher band of radio frequencies from 24 gigahertz to as high as 86 gigahertz resulting in far higher data rates and performance, but with the trade-off of reduced range.
5g能够并且将会利用更高频段的无线电频率,从24千兆赫到86千兆赫,从而获得更高的数据速率和性能,但要以减小范围为代价。
These new 5g radio waves can carry way more data to and from devices they just can’t carry the increased load quite as far this means that providers have to install a large number of small cellular towers in close proximity to each other to actually deliver the network.
这些新的5g无线电波可以传输更多的数据,但它们无法承受越来越大的负载,这意味着提供商必须在彼此靠近的地方安装大量小型蜂窝基站,才能真正传输网络。
These towers hold cell sites that are about the same size as a pizza box.
这些发射塔容纳的基站大小和披萨盒差不多。
They can be easily fixed to building roofs or light poles but each one has to be physically installed which is why the rollout of widespread 5g is going to take quite some time.
它们可以很容易地固定在建筑屋顶或灯杆上,但每一个都必须被物理安装,这就是为什么5g的普及将需要相当长的时间。
When these cell sites are in place they’ll be able to beam signals to specific locations where they are needed most.
当这些基站就位后,它们将能够将信号发送到最需要它们的特定位置。
This is far better than how conventional radio towers deliver signal which is to spread it anywhere and everywhere regardless of site-specific demand.
这比传统的发射塔传输信号的方式要好得多,传统的发射塔将信号传播到任何地方,而不受特定地点的需求。
5g operates on three different spectrum bands between 600 megahertz and 86 gigahertz while these numbers might just sound like useless statistics they’ll end up having a noticeable effect on your everyday use, especially in the early days of 5g.
5g运行在600兆赫到86兆赫之间的三个不同频段,而这些数字听起来可能只是无用的统计数据,它们最终会对你的日常使用产生明显的影响,尤其是在5g的早期。
The three spectrum bands that your 5g network will operate on are
5g网络运行的三个频段是
1.low band network which is the most common band used by carriers in the us for 4g lte
1.低频段网络是美国运营商最常用的4g lte频段
Low band spectrum offers the widest coverage and best wall penetration.
低频段频谱覆盖范围最广,穿透壁厚最好。
But it doesn’t offer any great shakes in the speed department
但在速度方面,它没有提供任何很棒的震动
5g running on the low band network will only run around 20 faster than current 4g with peak data speeds topping out at around 100 megabits per second.
在低频段网络上运行5g只会比目前的4g快20左右,数据传输速度最高可达每秒100兆左右。
2.high band spectrum which offers the highest performance for 5g.
2.高频段频谱,5g的最高性能。
however it’s not without its drawback either high band spectrum can offer peak speeds of up to 10 gigabits per second and has almost non-existent latency.
然而,它也不是没有缺点,高频段频谱可以提供高达每秒10千兆的峰值速度,而且几乎不存在延迟。
But its coverage area is narrow and penetration is poor so to utilize this network to its full potential.
但是它的覆盖范围很窄,渗透率很差,所以要充分利用这个网络的潜力。
Users will have to access plenty of cells that are all relatively close by
用户将不得不访问大量相对靠近的单元格
And then slotting in somewhere between the two is mid-band spectrum which offers a balance of both speed and coverage.
然后在两者之间的某个地方是中波段频谱,它提供了速度和覆盖范围的平衡。
Mid band provides faster speeds and lower latency than low band with peak speeds of up to 1 gigabits per second on paper.
中带比低带提供更快的速度和更低的延迟,纸上峰值速度可达每秒1千兆。
This doesn’t compete with high band in terms of power but in real world use and for most applications it will be more than enough.
在功率方面,这不会与高频段竞争,但在现实世界的使用中,对于大多数应用程序来说,这将是足够的。
The coverage and penetration of mid band will also make it a very reliable and consistent connection.
中带的覆盖和渗透也将使它成为一个非常可靠和一致的连接。
翻译2
Introduction to Fiber Optics
光纤概论
BY: Christina Hansen
During our current age, the increasing ability to transmit more information over longer distances more quickly has expanded the boundaries of our technological development in many areas such as data networks, wireless and satellite communications, cable operators, and broadcasters.
在我们当前的时代,越来越多的信息在更远的距离和更快的传输能力扩大了我们在许多领域的技术发展的边界,如数据网络、无线和卫星通信、有线电视运营商和广播公司。
All of this has become possible by the use of fiber optics, and as technology demands insist upon improved performance, fiber optics will continue to increase.
所有这一切都通过光纤的使用成为可能,随着技术要求坚持提高性能,光纤将继续增加。
What are Fiber Optics?
什么是光纤?
Fiber Optics, also called optical fibers, are microscopic strands of very pure glass with about the same diameter of a human hair. Thousands of these optical fibers are arranged in bundles in optical cables and are used to transmit light signals over long distances. The bundles are protected by a jacket, which is the cable’s outer covering.
光纤,也被称为光纤,是由非常纯的玻璃制成的微型束,其直径约为人类头发的直径。成千上万的这样的光纤成束排列在光缆中,用于长距离传输光信号。电缆束由一层护套保护,这层护套是电缆的外层覆盖物。
The single optical fiber consists of the core which is the thin glass center of the fiber where the light travels, the outer optical material that surrounds the core and reflects the light back into it is the cladding, and the plastic coating that protects the fiber from moisture and damage is the buffer coating.
单根光纤由纤芯组成,纤芯是光传播的薄玻璃中心,包裹纤芯并将光反射回纤芯的外层光学材料是包层,保护光纤不受潮和损坏的塑料涂层是缓冲涂层。
Single-mode and multi-mode are the two types of optical fibers. The single-mode, used for long distances, has small cores and transmits infrared laser light. The multi-mode, normally used for short distances, has large cores and transmits infrared light.
光纤有单模和多模两种。单模,用于长距离,有小的核心和传输红外激光。多模,通常用于短距离,有大的核心和传输红外光。
Fiber Optics versus Copper
光纤与铜
Even though the fiber optic system is similar to the copper wire system, fiber optics are steadily replacing copper wires today as an appropriate means of communication signal transmission.
尽管光纤系统类似于铜线系统,但光纤正在稳步取代铜线,成为通信信号传输的适当手段。
Some advantages fiber optics have over copper are the dollar savings because they are less expensive, fiber optics are thinner, and they have a higher carrying capacity. Optical fibers are well suited for carrying digital information. There’s no electricity so the danger of fire is reduced. Fiber optic cables are lightweight, take up less space, and are also flexible.
与铜相比,光纤的一些优点是节省资金,因为它们更便宜,光纤更薄,它们有更高的承载能力。光纤非常适合承载数字信息。没有电,所以火灾的危险降低了。光纤电缆重量轻,占用空间少,而且灵活。
History of Fiber Optics
光纤的历史
Fiber optics go back as far as Roman times, but the first was an “optical telegraph,” which allowed operators to relay a message from one tower to the next by a series of lights mounted on the towers. This was invented in the 1790s by the French Chappe brothers. Great achievement was made in optical science over the course of the next century.
光纤可以追溯到罗马时代,但最早的是“光电报”,它允许操作员通过安装在塔上的一系列灯将信息从一个塔传递到另一个塔。这是法国查佩兄弟在18世纪90年代发明的。在接下来的一个世纪里,光学科学取得了巨大的成就。
Fiber Optics during the 1800s
19世纪的光纤
Physicists Daniel Collodon and Jacques Babinet reported in the 1840s that light could be directed along jets of water for fountain displays. In 1854, John Tyndall, a British physicist, demonstrated that light could travel through water jets, thereby proving that a light signal could be bent.
物理学家丹尼尔·科洛登和雅克·巴比内在19世纪40年代报告说,光可以被引导沿着喷泉的水柱。1854年,英国物理学家约翰·廷德尔(John Tyndall)证明了光可以通过水射流传播,从而证明了光信号可以弯曲。
In 1880, Alexander Graham Bell patented an optical telephone system which assisted in the advancement of optical technology. Also in 1880, William Wheeler invented a system of light pipes that illuminated homes from an electric arch lamp located in the basement.
1880年,亚历山大·格雷厄姆·贝尔申请了一项光学电话系统的专利,这有助于光学技术的发展。同样在1880年,威廉·惠勒(William Wheeler)发明了一种光管系统,可以用位于地下室的一盏拱形电灯为房屋照明。
Bent glass rods were used to illuminate body cavities in 1888 by Dr. Roth and Professor Reuss of Vienna. Henry Saint-Rene designed a system of bent glass rods to guide light images in an early television scheme in 1895. A patent was applied for by an American, David Smith, in 1898 for a dental illuminator using a curved glass rod.
1888年,罗斯博士和维也纳的罗伊斯教授用弯曲的玻璃棒照亮人体的空腔。1895年,亨利·圣勒内设计了一种弯曲的玻璃棒系统,用于引导早期电视节目中的光图像。1898年,美国人大卫·史密斯(David Smith)申请了一项专利,发明了一种使用弯曲玻璃棒的牙科照明器。
Fiber Optics Move Forward in the 1900s
光纤技术在20世纪向前发展
The first person to transmit an image of a light bulb filament through a bundle of optical fibers was Heinrich Lamm in 1930. Then, Holger Moller Hansen applied for a Danish patent in 1951 on fiber-optic imaging in which he proposed cladding glass or plastic fibers with a transparent low-index material, but was denied because of the Baird and Hansell patents in 1926.
1930年,第一个通过一束光纤传输灯泡灯丝图像的人是海因里希·拉姆。然后,霍尔格·穆勒·汉森在1951年申请了一项关于光纤成像的丹麦专利,他提出用透明的低折射率材料包层玻璃或塑料纤维,但由于1926年的Baird和Hansell专利而被拒绝。
An undergraduate student named Larry Curtiss was hired by Basil Hirschowitz and C. Wilbur Peters in 1955 to work on their fiber-optic endoscope project. In 1956, Curtiss made the first glass-clad fibers by rod-in-tube method. And in 1957, Hirschowitz was the first to test fiber-optic endoscope on a patient.
1955年,巴兹尔·赫肖维茨(Basil Hirschowitz)和C.威尔伯·彼得斯(C. Wilbur Peters)雇佣了一位名叫拉里·柯蒂斯(Larry Curtiss)的本科生,参与他们的光纤内视镜项目。1956年,柯蒂斯用管中棒法制造了第一种玻璃包层纤维。1957年,赫肖维茨第一个在病人身上测试了光纤内窥镜。
Elias Snitzer of American Optical published a theoretical description of single mode fibers in 1961. In 1970, the scientists at Corning Glass Works reached their goal of making single mode fibers with attenuation less then 20dB/km. They achieved this through doping silica glass with titanium.
美国光学的Elias Snitzer在1961年发表了关于单模光纤的理论描述。1970年,康宁玻璃厂的科学家们达到了制造衰减小于20dB/km的单模光纤的目标。他们通过将二氧化硅玻璃与钛掺杂来实现这一点。
In 1973, Bell Laboratories developed a modified chemical vapor deposition process that heated chemical vapors and oxygen to form ultra-transparent glass that can be mass-produced into low-loss optical fiber. This process still remains the standard for fiber-optic cable manufacturing.
1973年,贝尔实验室开发了一种改良的化学气相沉积工艺,将化学蒸汽和氧气加热形成超透明玻璃,可批量生产成低损耗光纤。这个过程仍然是光纤电缆制造的标准。
The Dorset (UK) police installed the first non-experimental fiber-optic link in 1975, and the first live telephone traffic through fiber optics occurred in Long Beach, California two years later.
1975年,多塞特(英国)警方安装了第一个非实验性光纤连接,两年后,第一个通过光纤进行的电话通信出现在加州的长滩。
In the late 1970s and early 1980s, telephone companies used great numbers of fibers to rebuild their communications infrastructure. In the mid-1980s, Sprint was founded on the first nationwide, 100 percent, fiber-optic network.
在20世纪70年代末和80年代初,电话公司使用大量的光纤来重建他们的通信基础设施。在20世纪80年代中期,Sprint建立了第一个全国性的100%光纤网络。
In 1991, Desurvire and Payne demonstrated optical amplifiers that were built into the fiber-optic cable itself. The all-optic system could carry 100 times more information than cable with electronic amplifiers.
1991年,德苏尔维尔和佩恩展示了光纤电缆本身内置的光放大器。这种全光系统可以承载的信息量是带有电子放大器的电缆的100倍。
The first all-optic fiber cable called TPC-5, which used optical amplifiers, was laid across the Pacific Ocean in 1996. In 1997, the Fiber Optic Link Around the Globe (FLAG) became the longest single-cable network in the world and furnished the groundwork for the next generation of Internet applications.
1996年,第一个称为tpc5 – 5的全光纤电缆,使用光放大器,在太平洋上铺设。1997年,全球光纤连接成为世界上最长的单线网络,为下一代互联网应用提供了基础。
Today, the medical, military, telecommunication, industrial, data storage, networking, and broadcast industries are able to implement and use fiber optic technology in a variety of applications.
如今,医疗、军事、电信、工业、数据存储、网络和广播等行业都能够在各种应用中实施和使用光纤技术。
翻译3
What is OFDM: Orthogonal Frequency Division Multiplexing
什么是OFDM:正交频分复用
OFDM, Orthogonal Frequency Division Multiplexing uses multiple close spaced carriers each with low rate data for resilient communications.
OFDM,即正交频分多路复用技术,使用多个紧密间隔的载波,每个载波具有低速率的数据,实现弹性通信。
OFDM, Orthogonal Frequency Division Multiplexing is a form of signal waveform or modulation that provides some significant advantages for data links.
正交频分复用是一种信号波形或调制形式,为数据链路提供了一些显著的优势。
Accordingly, OFDM, Orthogonal Frequency Division Multiplexing is used for many of the latest wide bandwidth and high data rate wireless systems including Wi-Fi, cellular telecommunications and many more.
因此,OFDM,正交频分复用被用于许多最新的宽带宽和高数据速率无线系统,包括Wi-Fi,蜂窝电信等。
The fact that OFDM uses a large number of carriers, each carrying low bit rate data, means that it is very resilient to selective fading, interference, and multipath effects, as well providing a high degree of spectral efficiency.
OFDM使用大量的载波,每个载波携带低比特率数据,这意味着它对选择性衰落、干扰和多径效应有很强的弹性,同时提供了很高的频谱效率。
Early systems using OFDM found the processing required for the signal format was relatively high, but with advances in technology, OFDM presents few problems in terms of the processing required.
早期使用OFDM的系统发现对信号格式的处理要求相对较高,但随着技术的进步,OFDM在所需的处理方面很少出现问题。
Development of OFDM
OFDM的发展
The use of OFDM and multicarrier modulation in general has come to the fore in recent years as it provides an ideal platform for wireless data communications transmissions.
近年来,OFDM和多载波调制的应用日益突出,因为它为无线数据通信传输提供了一个理想的平台。
However the concept of OFDM technology was first investigated in the 1960s and 1970s during research into methods for reducing interference between closely spaced channels. IN addition to this other requirements needed to achieve error free data transmission in the presence of interference and selective propagation conditions.
而OFDM技术的概念最早是在20世纪60 – 70年代研究减少密集信道间干扰的方法时提出的。除此之外,还需要在干扰和选择性传播条件存在的情况下实现无误差数据传输。
Initially the use of OFDM required large levels of processing and accordingly it was not viable for general use.
最初,OFDM的使用需要大量的处理,因此它不适合普遍使用。
Some of the first systems to adopt OFDM were digital broadcasting – here OFDM was able to provide a highly reliable form of data transport over a variety of signal path conditions. Once example was DAB digital radio that was introduced in Europe and other countries. It was Norwegian Broadcasting Corporation NRK that launched the first service on 1st June 1995. OFDM was also used for digital television.
最早采用OFDM的一些系统是数字广播——在这里,OFDM能够在各种信号路径条件下提供高度可靠的数据传输形式。曾经的例子是欧洲和其他国家引进的DAB数字广播。1995年6月1日,挪威广播公司(NRK)首次推出了这项服务。OFDM也被用于数字电视。
Later processing power increased as a result of rising integration levels enabling OFDM to be considered for the 4G mobile communications systems which started to be deployed from around 2009. Also OFDM was adopted for Wi-Fi and a variety of other wireless data systems.
后来,由于集成水平的提高,处理能力也随之提高,使得2009年前后开始部署的4G移动通信系统可以考虑采用OFDM。此外,OFDM也被用于Wi-Fi和各种其他无线数据系统。
What is OFDM?
OFDM is a form of multicarrier modulation. An OFDM signal consists of a number of closely spaced modulated carriers. When modulation of any form – voice, data, etc. is applied to a carrier, then sidebands spread out either side. It is necessary for a receiver to be able to receive the whole signal to be able to successfully demodulate the data. As a result when signals are transmitted close to one another they must be spaced so that the receiver can separate them using a filter and there must be a guard band between them. This is not the case with OFDM. Although the sidebands from each carrier overlap, they can still be received without the interference that might be expected because they are orthogonal to each another. This is achieved by having the carrier spacing equal to the reciprocal of the symbol period.
OFDM是一种多载波调制。OFDM信号由许多紧密间隔的调制载波组成。当把任何形式的调制——声音、数据等——应用到载波上时,边带就向两边展开。接收机必须能够接收到整个信号,才能成功解调数据。因此,当信号互相靠近传输时,它们必须保持一定的间隔,以便接收方可以使用滤波器将它们分开,并且它们之间必须有一个保护带。OFDM则不是这样。虽然每个载波的边带重叠,但由于它们彼此正交,仍然可以接收到预期的干扰。这是通过使载波间距等于符号周期的倒数来实现的。
To see how OFDM works, it is necessary to look at the receiver. This acts as a bank of demodulators, translating each carrier down to DC. The resulting signal is integrated over the symbol period to regenerate the data from that carrier. The same demodulator also demodulates the other carriers. As the carrier spacing equal to the reciprocal of the symbol period means that they will have a whole number of cycles in the symbol period and their contribution will sum to zero – in other words there is no interference contribution.
要了解OFDM是如何工作的,有必要看看接收机。这相当于一组解调器,将每个载波转换为直流。所产生的信号在符号周期内被集成以从该载波重新生成数据。同一解调器也解调其他载波。由于载波间距等于符号周期的倒数,这意味着它们在符号周期中有一个完整的周期数,它们的贡献之和为零——换句话说,没有干扰贡献。
One requirement of the OFDM transmitting and receiving systems is that they must be linear. Any non-linearity will cause interference between the carriers as a result of inter-modulation distortion. This will introduce unwanted signals that would cause interference and impair the orthogonality of the transmission.
OFDM发射和接收系统的一个要求是它们必须是线性的。由于互调失真,任何非线性都会引起载波之间的干扰。这会引入不必要的信号,造成干扰并损害传输的正交性。
In terms of the equipment to be used the high peak to average ratio of multi-carrier systems such as OFDM requires the RF final amplifier on the output of the transmitter to be able to handle the peaks whilst the average power is much lower and this leads to inefficiency. In some systems the peaks are limited. Although this introduces distortion that results in a higher level of data errors, the system can rely on the error correction to remove them.
就使用的设备而言,多载波系统(如OFDM)的高峰平均比要求发射机输出的射频最终放大器能够处理峰值,同时平均功率要低得多,这导致了效率低下。在某些系统中,峰值是有限的。虽然这会引入失真,导致更高级别的数据错误,但系统可以依靠误差校正来消除它们。
Data on OFDM
The traditional format for sending data over a radio channel is to send it serially, one bit after another. This relies on a single channel and any interference on that single frequency can disrupt the whole transmission.
在无线信道上发送数据的传统格式是连续地、一位接一位地发送数据。这依赖于一个单一的频道,任何对这个单一频率的干扰都可能破坏整个传输。
OFDM adopts a different approach. The data is transmitted in parallel across the various carriers within the overall OFDM signal. Being split into a number of parallel “substreams” the overall data rate is that of the original stream, but that of each of the substreams is much lower, and the symbols are spaced further apart in time.
OFDM采用了不同的方法。数据在整个OFDM信号内的各种载波上并行传输。被分成许多并行的“子流”后,总体的数据速率与原始流相同,但每个子流的数据速率要低得多,而且符号在时间上间隔得更远。
This reduces interference among symbols and makes it easier to receive each symbol accurately while maintaining the same throughput.
这减少了符号之间的干扰,使它更容易准确地接收每个符号,同时保持相同的吞吐量。
The lower data rate in each stream means that the interference from reflections is much less critical. This is achieved by adding a guard band time or guard interval into the system. This ensures that the data is only sampled when the signal is stable and no new delayed signals arrive that would alter the timing and phase of the signal. This can be achieved far more effectively within a low data rate substream.
每个流中较低的数据速率意味着来自反射的干扰不那么重要。这是通过在系统中添加一个保护带时间或保护间隔来实现的。这确保了只有在信号稳定且没有新的延迟信号到达时才对数据进行采样,这些延迟信号会改变信号的时间和相位。这可以在低数据速率子流中更有效地实现。
The distribution of the data across a large number of carriers in the OFDM signal has some further advantages. Nulls caused by multi-path effects or interference on a given frequency only affect a small number of the carriers, the remaining ones being received correctly. By using error-coding techniques, which does mean adding further data to the transmitted signal, it enables many or all of the corrupted data to be reconstructed within the receiver. This can be done because the error correction code is transmitted in a different part of the signal.
在OFDM信号中,数据在大量载波间的分布有一些进一步的优势。在给定频率上由多径效应或干扰引起的空值只影响少数载波,其余的载波将被正确接收。通过使用错误编码技术,这意味着向传输信号添加更多的数据,它使许多或所有损坏的数据能够在接收端内重建。这是因为纠错码是在信号的不同部分传输的。
翻译4
Multiplexing is a technique by which different analog and digital streams of transmission can be simultaneously processed over a shared link. Multiplexing divides the high capacity medium into low capacity logical medium which is then shared by different streams.
多路复用是一种可以在共享链路上同时处理不同模拟和数字传输流的技术。多路复用将高容量的媒体分成低容量的逻辑媒体,然后由不同的流共享。
Communication is possible over the air (radio frequency), using a physical media (cable), and light (optical fiber). All mediums are capable of multiplexing.
When multiple senders try to send over a single medium, a device called Multiplexer divides the physical channel and allocates one to each. On the other end of communication, a De-multiplexer receives data from a single medium, identifies each, and sends to different receivers.
通信可以通过空气(无线电频率)、使用物理媒体(电缆)和光(光纤)进行。所有的媒体都能够多路复用。
Frequency Division Multiplexing
频分多路复用
When the carrier is frequency, FDM is used. FDM is an analog technology. FDM divides the spectrum or carrier bandwidth in logical channels and allocates one user to each channel. Each user can use the channel frequency independently and has exclusive access of it. All channels are divided in such a way that they do not overlap with each other. Channels are separated by guard bands. Guard band is a frequency which is not used by either channel.
当载波为频率时,采用FDM。FDM是一种模拟技术。FDM将频谱或载波带宽划分为逻辑信道,每个信道分配一个用户。每个用户可以独立使用该信道频率,并拥有该信道频率的独占访问权。所有通道的划分方式都不相互重叠。通道由保护频带分隔。保护频带是两个信道都不使用的频率。
Time Division Multiplexing
时分多路复用
TDM is applied primarily on digital signals but can be applied on analog signals as well. In TDM the shared channel is divided among its user by means of time slot. Each user can transmit data within the provided time slot only. Digital signals are divided in frames, equivalent to time slot i.e. frame of an optimal size which can be transmitted in given time slot.
时分复用主要应用于数字信号,但也可以应用于模拟信号。在时分复用中,共享信道通过时隙的方式分配给用户。每个用户只能在提供的时隙内传输数据。数字信号被分成帧,与时隙等效,即可以在给定时隙中传输的最佳大小的帧。
TDM works in synchronized mode. Both ends, i.e. Multiplexer and De-multiplexer are timely synchronized and both switch to next channel simultaneously.
TDM工作在同步模式下。复用器和解复用器的两端及时同步,同时切换到下一个信道。
When channel A transmits its frame at one end,the De-multiplexer provides media to channel A on the other end.As soon as the channel A’s time slot expires, this side switches to channel B. On the other end, the De-multiplexer works in a synchronized manner and provides media to channel B. Signals from different channels travel the path in interleaved manner.
当通道A在一端传输帧时,解复用器向另一端的通道A提供介质。一旦通道A的时隙到期,这一侧就切换到通道b。在另一端,解复用器以同步的方式工作,并为通道b提供媒体。来自不同通道的信号以交错的方式传输。
Wavelength Division Multiplexing
波分多路复用
Light has different wavelength (colors). In fiber optic mode, multiple optical carrier signals are multiplexed into an optical fiber by using different wavelengths. This is an analog multiplexing technique and is done conceptually in the same manner as FDM but uses light as signals.
光有不同的波长(颜色)。在光纤模式下,多个光载波信号通过不同波长复用到一根光纤中。这是一种模拟多路复用技术,在概念上与FDM相同,但使用光作为信号。
Further, on each wavelength time division multiplexing can be incorporated to accommodate more data signals.
此外,在每个波长上可以合并时分复用以容纳更多的数据信号。
Code Division Multiplexing
码分多路复用
Multiple data signals can be transmitted over a single frequency by using Code Division Multiplexing. FDM divides the frequency in smaller channels but CDM allows its users to full bandwidth and transmit signals all the time using a unique code. CDM uses orthogonal codes to spread signals.
使用码分多路复用可以在一个频率上传输多个数据信号。FDM将频率划分在较小的信道中,但CDM允许用户使用全带宽,并始终使用唯一的代码传输信号。CDM使用正交码来传播信号。
Each station is assigned with a unique code, called chip. Signals travel with these codes independently, inside the whole bandwidth.The receiver knows in advance the chip code signal it has to receive.
每个工作站都被分配一个唯一的代码,称为芯片。信号在整个带宽内独立地通过这些编码传播。接收器事先知道它要接收的芯片代码信号。
翻译5
What is a DSP?
什么是DSP?
Digital Signal Processors (DSP) take real-world signals like voice, audio, video, temperature, pressure, or position that have been digitized and then mathematically manipulate them. A DSP is designed for performing mathematical functions like “add”, “subtract”, “multiply” and “divide” very quickly.
数字信号处理器(DSP)将语音、音频、视频、温度、压力或位置等被数字化的真实信号,然后用数学方法对其进行处理。一种DSP设计用于快速执行“加”、“减”、“乘”和“除”等数学功能。
Signals need to be processed so that the information that they contain can be displayed, analyzed, or converted to another type of signal that may be of use. In the real-world, analog products detect signals such as sound, light, temperature or pressure and manipulate them. Converters such as an Analog-to-Digital converter then take the real-world signal and turn it into the digital format of 1’s and 0’s. From here, the DSP takes over by capturing the digitized information and processing it. It then feeds the digitized information back for use in the real world. It does this in one of two ways, either digitally or in an analog format by going through a Digital-to-Analog converter. All of this occurs at very high speeds.
需要对信号进行处理,以便显示、分析它们所包含的信息,或将其转换为另一种可能有用的信号类型。在现实世界中,模拟产品可以检测声音、光线、温度或压力等信号,并对其进行操作。转换器,例如模数转换器,然后将现实世界的信号转换成1和0的数字格式。从这里开始,DSP通过捕捉数字化信息并进行处理来接管。然后,它将数字化的信息反馈给现实世界使用。它通过两种方式之一,数字或模拟格式通过数字-模拟转换器。所有这些都发生在非常高的速度下。
To illustrate this concept, the diagram below shows how a DSP is used in an MP3 audio player. During the recording phase, analog audio is input through a receiver or other source. This analog signal is then converted to a digital signal by an analog-to-digital converter and passed to the DSP. The DSP performs the MP3 encoding and saves the file to memory. During the playback phase, the file is taken from memory, decoded by the DSP and then converted back to an analog signal through the digital-to-analog converter so it can be output through the speaker system. In a more complex example, the DSP would perform other functions such as volume control, equalization and user interface.
为了说明这个概念,下图展示了DSP如何在MP3音频播放器中使用。在录音阶段,模拟音频通过接收器或其他来源输入。然后,这个模拟信号被模数转换器转换成数字信号,并传递给DSP。DSP进行MP3编码,并将文件保存到内存中。在回放阶段,文件从内存中取出,由DSP解码,然后通过数模转换器转换回模拟信号,从而可以通过扬声器系统输出。在一个更复杂的例子中,DSP将执行其他功能,如音量控制,均衡和用户界面。
A DSP’s information can be used by a computer to control such things as security, telephone, home theater systems, and video compression. Signals may be compressed so that they can be transmitted quickly and more efficiently from one place to another (e.g. teleconferencing can transmit speech and video via telephone lines). Signals may also be enhanced or manipulated to improve their quality or provide information that is not sensed by humans (e.g. echo cancellation for cell phones or computer-enhanced medical images). Although real-world signals can be processed in their analog form, processing signals digitally provides the advantages of high speed and accuracy.
DSP的信息可以被计算机用来控制诸如安全、电话、家庭影院系统和视频压缩等事情。信号可以被压缩,这样它们就可以从一个地方更快更有效地传输到另一个地方(例如,电话会议可以通过电话线传输语音和视频)。信号还可以被增强或操纵,以提高其质量或提供人类无法感知的信息(例如,手机的回声消除或计算机增强的医学图像)。虽然现实世界的信号可以以模拟形式处理,但数字处理信号具有速度快、精度高的优点。
Because it’s programmable, a DSP can be used in a wide variety of applications. You can create your own software or use software provided by ADI and its third parties to design a DSP solution for an application. For more detailed information about the advantages of using DSP to process real-world signals, please read Part 1 of the article from Analog Dialogue titled: Why Use DSP? Digital Signal Processing 101- An Introductory Course in DSP System Design.
由于DSP是可编程的,它可以用于各种各样的应用。您可以创建自己的软件,也可以使用ADI及其第三方提供的软件,为某个应用程序设计DSP解决方案。关于使用DSP处理真实信号的优势的更多详细信息,请阅读《模拟对话》文章的第1部分:为什么使用DSP?数字信号处理101- DSP系统设计导论课程。
What’s Inside a DSP?
DSP的内部是什么?
A DSP contains these key components:
DSP包含以下关键组件:
Program Memory: Stores the programs the DSP will use to process data
程序存储器:用于存储DSP处理数据的程序
Data Memory: Stores the information to be processed
数据存储器:存储要处理的信息
Compute Engine: Performs the math processing, accessing the program from the Program Memory and the data from the Data Memory
计算引擎:执行数学处理,从程序内存和数据内存访问程序
Input/Output: Serves a range of functions to connect to the outside world
输入/输出:提供一系列连接外部世界的功能
翻译6
Built on 3 main pillars, 5G will create tremendous opportunities:
基于三大支柱,5G将创造巨大的机遇:
• Enhanced Mobile Broadband (eMBB) will provide mobile network customers and industrial users with enhanced capacities, benefiting B2C, entertainment and media, and other service sectors. • Ultra-reliable and Low-latency Communication (URLLC) will support new use cases in mission critical applications (e.g. autonomous driving, remote surgical operation, industry automation).
•增强移动宽带(eMBB)将为移动网络客户和工业用户提供增强的能力,使B2C、娱乐、媒体和其他服务部门受益。•超可靠低延迟通信(URLLC)将支持关键任务应用中的新用例(如自动驾驶、远程手术、工业自动化)。
• Massive Machine-type Communications (mMTC) will enable industry players to connect massive numbers of devices with specific connectivity requirements, in sectors such as manufacturing, utilities, and logistics. Much more than any previous generation of technology, the 5G paradigm brings together mobile network operators, equipment vendors, and other industry stakeholders, due to the broad range of technical and business opportunities opened up by 5G. • Network operators have a central role in 5G deployment as they will run the 5G networks. They will commit in the greatest part of the necessary CAPEX and OPEX.
•大规模机器类型通信(mMTC)将使行业参与者能够在制造业、公用事业和物流等行业中,将具有特定连接要求的大量设备连接起来。由于5G带来了广泛的技术和商业机会,5G范式比以往任何一代技术都更能将移动网络运营商、设备供应商和其他行业利益相关者聚集在一起。•网络运营商在5G部署中发挥核心作用,因为他们将运行5G网络。他们将承担大部分必要的资本支出和运营成本。
• Equipment vendors develop 5G technologies, define and introduce 5G products (RAN, core network, services, handsets).
设备供应商开发5G技术,定义和引入5G产品(RAN、核心网、服务、手机)。
• Industry stakeholders are brought into the paradigm by the new opportunities with 5G. Many sectors are involved because 5G will enable massive innovation both on the product side (e.g. connected vehicles) and on the productivity side (e.g. industrial IoT).
•5G带来的新机遇将行业利益相关者引入范式。许多行业都参与其中,因为5G将在产品方面(如联网汽车)和生产力方面(如工业物联网)实现大规模创新。
Mobile network operators are the natural investors in 5G. Projected investments will reach USD 1 trillion between 2018 and 20251 :
移动网络运营商是5G的天然投资者。2018年至20251年,预计投资额将达到1万亿美元:
• From an internal development standpoint, operator business models will be stressed by the exponential growth in demand for data (x6 between 2017 and 20242 ), which will increase the costs of network management and the level of risk.
•从内部发展的角度来看,运营商的业务模式将受到数据需求指数增长的影响(2017年至20242年间x6),这将增加网络管理的成本和风险水平。
• Operators also have external incentives, such as users demand for better services and new applications, changes in the global competitive landscape, and their home nation’s infrastructure needs. Growing demand for 5G will trigger investment from other industry stakeholders as well. These massive investments will result in important scale effects. The cost of production and maintenance for 5G networks will fall, and the value of the networks will increase in the eyes of network users. These outcomes are supported by theories of network externalities (e.g. Katz and Shapiro3 ) or Metcalfe’s law:
运营商也有外部激励因素,比如用户对更好服务和新应用的需求,全球竞争格局的变化,以及本国的基础设施需求。5G需求的增长也将引发其他行业利益相关者的投资。这些大规模投资将产生重要的规模效应。5G网络的生产和维护成本将下降,网络在网络用户眼中的价值将增加。这些结果得到了网络外部性理论(如Katz和Shapiro3)或梅特卡夫定律的支持:
• When more 5G products comply with the same technical standards, customers will benefit more from affordable devices and high-quality services.
当更多的5G产品符合相同的技术标准时,客户将从廉价的设备和高质量的服务中受益更多。
• As more vertical industries adopt 5G technologies, end users will receive more value from these industries, as broad adoption of technologies increases the potential for interoperability and cooperation and drives the creation of new services.
随着越来越多的垂直行业采用5G技术,终端用户将从这些行业获得更多价值,因为技术的广泛采用增加了互操作性和合作的潜力,并推动创建新的服务。
Investment and engagement by all stakeholders will lower the costs of 5G deployment and help to fulfill the potential of this new technology. The result will be better economies of scale and enhanced value creation throughout the whole 5G value chain, both of which will be key levers for 5G adoption.
所有利益相关者的投资和参与将降低5G部署的成本,并有助于实现这一新技术的潜力。其结果将是在整个5G价值链中更好的规模经济和更高的价值创造,这两者都将是采用5G的关键杠杆。